43 research outputs found

    Cricket: A Mapped, Persistent Object Store

    Get PDF
    This paper describes Cricket, a new database storage system that is intended to be used as a platform for design environments and persistent programming languages. Cricket uses the memory management primitives of the Mach operating system to provide the abstraction of a shared, transactional single-level store that can be directly accessed by user applications. In this paper, we present the design and motivation for Cricket. We also present some initial performance results which show that, for its intended applications, Cricket can provide better performance than a general-purpose database storage system

    A performance evaluation of pointer-based joins

    Full text link

    Optimizing cursor movement in holistic twig joins

    Full text link
    Holistic twig join algorithms represent the state of the art for evaluating path expressions in XML queries. Using inverted in-dexes on XML elements, holistic twig joins move a set of index cursors in a coordinated way to quickly ¯nd structural matches. Because each cursor move can trigger I/O, the performance of a holistic twig join is largely determined by how many cursor moves it makes, yet, surprisingly, existing join algorithms have not been optimized along these lines. In this paper, we describe TwigOptimal, a new holistic twig join algorithm with optimal cur-sor movement. We sketch the proof of TwigOptimal's optimality, and describe how TwigOptimal can use information in the return clause of XQuery to boost its performance. Finally, experimen-tal results are presented, showing TwigOptimal's superiority over existing holistic twig join algorithms

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Cricket: A Mapped, Persistent Object Store

    No full text
    This paper describes Cricket, a new database storage system that is intended to be used as a platform for design environments and persistent programming languages. Cricket uses the memory management primitives of the Mach operating system to provide the abstraction of a shared, transactional single-level store that can be directly accessed by user applications. In this paper, we present the design and motivation for Cricket. We also present some initial performance results which show that, for its intended applications, Cricket can provide better performance than a general-purpose database storage system. (To appear in Proc. of the 4th Intl. Workshop on Persistent Object Systems Design, Implementation and Use) 1. INTRODUCTION In recent years, there has been a great deal of research in extending database technology to meet the needs of emerging database applications such as text management and multi-media office systems (see [DBE87] for a good survey). Out of this research has come a v..

    High Performance Implementation Techniques for Next Generation Database Systems

    No full text

    Cricket: A Mapped, Persistent Object Store

    No full text
    This paper describes Cricket, a new database storage system that is intended to be used as a platform for design environments and persistent programming languages. Cricket uses the memory management primitives of the Mach operating system to provide the abstraction of a shared, transactional single-level store that can be directly accessed by user applications. In this paper, we present the design and motivation for Cricket. We also present some initial performance results which show that, for its intended applications, Cricket can provide better performance than a general-purpose database storage system
    corecore